

The 26th International Workshop on Weak Interactions and Neutrinos (WIN2017)

Leptogenesis via Weinberg operator

Ye-Ling Zhou, IPPP Durham, 20 June 2017

Baryon-antibaryon asymmetry

Most matter is formed by baryon, not anti-baryon.

$$\eta_B \equiv \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$$
 = $6.105^{+0.086}_{-0.081} \times 10^{-10}$ Planck 2015

The SM cannot provide strong out-of-equilibrium dynamics and enough CP violation.

[1] Parameter	[2] 2013N(DS)	[3] 2013F(DS)	[4] 2013F(CY)	[5] 2015F(CHM)	[6] 2015F(CHM) (Plik)
100θwg	1. 04 131 ± 0.00063	1.04126 + 0.00047	1.04121 + 0.00048	1.04094 + 0.00048	1.04086 + 0.00048
$\Omega_b h^2 \dots$	0.02205 ± 0.00028	0.02234 ± 0.00023	0.02230 ± 0.00023	0.02225 ± 0.00023	0.02222 ± 0.00023
$\Omega_c h^2 \dots \dots$	0.1199 ± 0.0027	0.1189 ± 0.0022	0.1188 ± 0.0022	0.1194 ± 0.0022	0.1199 ± 0.0022
H_0	67.3 ± 1.2	67.8 ± 1.0	67.8 ± 1.0	67.48 ± 0.98	67.26 ± 0.98

Baryogenesis via leptogenesis

Leptogenesis and neutrino masses

Why neutrinos have masses and these masses are so tiny?

In the SM without extending particle content, the only way to generate a neutrino mass is using higher dimensional operators.

Weinberg operator

$$\mathcal{L}_W = \frac{\lambda_{\alpha\beta}}{\Lambda} \ell_{\alpha L} H C \ell_{\beta L} H + \text{h.c.}$$

$$m_{\nu} = \lambda \frac{v_H^2}{\Lambda} \qquad \frac{\Lambda}{\lambda} \sim 10^{15} \text{ GeV}$$

Neutrino masses are Majorana masses

UV completions for Weinberg operator

Seesaw mechanism: type-I, II, III

Low scale seesaw models

inverse seesaw, linear seesaw, multiple seesaw, type-(I+II), seesaw with flavor symmetries, ...

Radiative corrections

Zee, Zee-Babu models, ...

SUSY: R-parity violation

Baryogenesis via leptogenesis

Sakharov conditions for leptogenesis

SM L/B-L violation

C/CP violation

Out of equilibrium dynamics

Leptogenesis in the framework of seesaw

Leptogenesis via RH neutrino decays Fukugita, Yanagida, 1986

RH neutrino N

CP violation

Decay of lightest N

$$\Delta f_{\ell_{\alpha}} \equiv f_{\ell_{\alpha}} - f_{\overline{\ell}_{\alpha}} \propto \operatorname{Im} \left\{ \frac{H}{N_{1}} \times \left(\frac{L_{\beta}}{N_{1}} \times \left(\frac{L_{\beta}}{N_{1}} + \frac{L_{\beta}}{N_{1}} + \frac{H}{N_{1}} \right) \right) \right\} \times \operatorname{Im} \left\{ Y_{\nu\alpha 1}^{*} (Y_{\nu}^{\dagger} Y_{\nu})_{1j} Y_{\nu\alpha j} \right\}$$

Leptogenesis via RH neutrino oscillations

The fall of Leptogenesis in the framework of seesaw

However, these mechanisms do not work if ...

- all RH neutrinos have masses above 10¹² GeV;
- there is no physically imaginary parameter in the Yukawa coupling, thus no CP violation;
- the Majorana neutrino masses are generated by a mechanism different from type-I seesaw?

Leptogenesis via Weinberg operator

Silvia Pascoli, Jessica Turner, YLZ, arXiv:1609.07969

Three Sakharov conditions are satisfied as follows:

The Weinberg operator violates lepton number and leads to LNV processes. $_{H^*H^* \ \leftrightarrow \ \ell\ell \ , \quad \bar{\ell}H^* \ \leftrightarrow \ \ell H \ , \quad \bar{\ell}H^*H^* \ \leftrightarrow \ \ell \ , }$

$$ar{\ell} \leftrightarrow \ell HH \,, \quad \ell H \leftrightarrow \ell H\,, \quad \ell H \,H \leftrightarrow \ell \ell H \,$$

The Weinberg operator is very weak and can directly provide out of equilibrium dynamics in the early Universe.

$$\Gamma_{\rm W} \sim \langle \sigma n \rangle \sim \frac{1}{4\pi} \frac{\lambda^2}{\Lambda^2} T^3 \sim \frac{1}{4\pi} \frac{m_{\nu}^2}{v_H^4} T^3$$

$$T < 10^{12} \, {\rm GeV}$$

$$H_u \sim 10 \frac{T^2}{m_{\rm pl}}$$

$$H_u \sim 10 \frac{T^2}{m_{\rm pl}}$$

No washout if there are no other LNV sources.

We assume that a phase transition triggers a time-varying Weinberg operator, giving rise to CP violation.

Motivation for varying Weinberg operator

A lot of symmetries have been proposed in the lepton sector. Their breaking may lead to a time-varying Weinberg operator.

B-L symmetry breaking

To generate a CP violation, at least two scalars are needed.

Flavour symmetry breaking

Flavour symmetries		Continuous	Discrete	
	Abelian	Fraggatt-Nielson, L _{mu} -L _{tau}	Z _n	
	Non-Abelian	SU(3), SO(3),	A ₄ , S ₄ , A ₅ , Δ(48),	

CP symmetry breaking

Assuming first-order phase transition

CP violation from varying Weinberg operator

Example: time-dependent di-lepton production

$$H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'}$$

$$S = \mathbf{1} + (-i) \int_{-\infty}^{+\infty} dt H_I(t) + \cdots,$$

$$H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'}$$

$$= \textbf{Canonical quantisation}$$

$$H(x) = \int \frac{d^3\mathbf{q}}{(2\pi)^3\sqrt{2\omega_{\mathbf{q}}}} \left(a_{\mathbf{q}}e^{-i(\omega_{\mathbf{q}}x^0 - \mathbf{q} \cdot \mathbf{x})} + b_{\mathbf{q}}^{\dagger}e^{i(\omega_{\mathbf{q}}x^0 - \mathbf{q} \cdot \mathbf{x})}\right),$$

$$H^*(x) = \int \frac{d^3\mathbf{q}}{(2\pi)^3\sqrt{2\omega_{\mathbf{q}}}} \left(b_{\mathbf{q}}e^{-i(\omega_{\mathbf{q}}x^0 - \mathbf{q} \cdot \mathbf{x})} + a_{\mathbf{q}}^{\dagger}e^{i(\omega_{\mathbf{q}}x^0 - \mathbf{q} \cdot \mathbf{x})}\right);$$

$$\ell_{\alpha}(x) = \int \frac{d^3\mathbf{k}}{(2\pi)^3\sqrt{2\omega_{\mathbf{k}}}} \sum_{s} \left(a_{\alpha\mathbf{k}}^s u_{\mathbf{k}}^s e^{-i(\omega_{\mathbf{k}}x^0 - \mathbf{k} \cdot \mathbf{x})} + b_{\alpha\mathbf{k}}^{\dagger\dagger}v_{\mathbf{k}}^s e^{i(\omega_{\mathbf{k}}x^0 - \mathbf{k} \cdot \mathbf{x})}\right)$$

$$\bar{\ell}_{\alpha}(x) = \int \frac{d^3\mathbf{k}}{(2\pi)^3\sqrt{2\omega_{\mathbf{k}}}} \sum_{s} \left(b_{\alpha\mathbf{k}}^s \bar{v}_{\mathbf{k}}^s e^{-i(\omega_{\mathbf{k}}x^0 - \mathbf{k} \cdot \mathbf{x})} + a_{\alpha\mathbf{k}}^{\dagger\dagger} \bar{v}_{\mathbf{k}}^s e^{i(\omega_{\mathbf{k}}x^0 - \mathbf{k} \cdot \mathbf{x})}\right)$$

$$H_I(t) = \int d^3 \mathbf{x} \mathcal{L}_W = rac{1}{\Lambda} \int d^3 \mathbf{x} \; \lambda_{\alpha\beta}(t) \ell_{\alpha L} H C \ell_{\beta L} H + ext{h.c.}$$
 canonical quantisation

Magnitude

Ignoring thermal distribution factors

$$M(H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'}) \propto \frac{2}{\Lambda} \int_{-\infty}^{+\infty} dt \lambda_{\alpha\beta}^*(t) e^{i\Delta\omega t} e^{-i\Delta\mathbf{k}\cdot\mathbf{x}}, \quad \Delta\mathbf{k} = \mathbf{k} + \mathbf{k}' - \mathbf{q} - \mathbf{q}'.$$

$$\Delta\omega = \omega_{\mathbf{k}} + \omega_{\mathbf{k}'} - \omega_{\mathbf{q}} - \omega_{\mathbf{q}'}$$

$$M(H_{\mathbf{q}}H_{\mathbf{q}'} \to \bar{\ell}_{\mathbf{k}}\bar{\ell}_{\mathbf{k}'}) \propto \frac{2}{\Lambda} \int_{-\infty}^{+\infty} dt \lambda_{\alpha\beta}(t) e^{i\Delta\omega t} e^{-i\Delta\mathbf{k}\cdot\mathbf{x}}.$$

$$\lambda_{\alpha\beta}(t) = |\lambda_{\alpha\beta}(t)| e^{i\phi_{\alpha\beta}(t)}$$

$$\Delta_{CP}(H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'}) \equiv \frac{|M(H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'})|^2 - |M(H_{\mathbf{q}}H_{\mathbf{q}'} \to \overline{\ell_{\mathbf{k}}}\overline{\ell_{\mathbf{k}'}})|^2}{|M(H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'})|^2 + |M(H_{\mathbf{q}}H_{\mathbf{q}'} \to \overline{\ell_{\mathbf{k}}}\overline{\ell_{\mathbf{k}'}})|^2}$$

CP violation from varying Weinberg operator

CP violation of di-lepton <u>production</u> and <u>annihilation</u>

$$\Delta_{CP}(H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'}) \propto \int_{-\infty}^{+\infty} dt_1 dt_2 \operatorname{Im} \left\{ \operatorname{tr} \left[\lambda^*(t_1) \lambda(t_2) \right] \right\} \operatorname{Im} \left\{ e^{i\Delta\omega(t_1 - t_2)} \right\}$$

$$\Delta_{CP}(\ell_{\mathbf{k}}\ell_{\mathbf{k}'} \to H_{\mathbf{q}}^*H_{\mathbf{q}'}^*) \propto \int_{-\infty}^{+\infty} dt_1 dt_2 \operatorname{Im} \left\{ \operatorname{tr} \left[\lambda(t_1) \lambda^*(t_2) \right] \right\} \operatorname{Im} \left\{ e^{-i\Delta\omega(t_1 - t_2)} \right\}$$

$$\Delta_{CP}(\ell_{\mathbf{k}}\ell_{\mathbf{k}'} \to H_{\mathbf{q}}^*H_{\mathbf{q}'}^*) = \Delta_{CP}(H_{\mathbf{q}}^*H_{\mathbf{q}'}^* \to \ell_{\mathbf{k}}\ell_{\mathbf{k}'})$$

Total lepton asymmetry

$$\Delta f_{\ell} \sim 2\Delta_{CP}(H^*H^* \leftrightarrow \ell\ell) \Big[\gamma(H^*H^* \to \ell\ell) - \gamma(\ell\ell \to H^*H^*) \Big] / T + \cdots$$

$$\Delta f_{\ell_{lpha}} \propto \ \mathrm{Im} \left\{ \begin{array}{c} \lambda_{lphaeta}^{*}(t_{1}) \\ \end{array} \right. \times \left. \begin{array}{c} \lambda_{lphaeta}(t_{2}) \\ \end{array} \right. \left. \begin{array}{c} \lambda_{lphaeta}(t_{2}) \\ \end{array} \right.$$

Motivation for closed-time-path (CTP) approach

- QFT at zero temperature or in thermal equilibrium
- QFT in non-equilibrium case

Background is time-dependent. Vacuum/background is in thermal We have to specify a time. equilibrium, time-dependent

Observable

Background

In-in

Classical formalism vs CTP formalism

Leptogenesis via RH neutrino decay

Anisimov, Buchmuller, Drewes, Mendizabal, 1012.5821

CPV source in classical formalism

Self energies including CPV source in CTP formalism

Leptogenesis via RH neutrino oscillation

CPV source in classical formalism

Self energy including CPV source in CTP formalism

Leptogenesis via Weinberg operator (in CTP approach)

CPV source in classical formalism

Self energies including CPV source in CTP formalism

$$\Sigma_{\alpha\beta}^{<,>}(x_1,x_2) = 3 \times \frac{4}{\Lambda^2} \sum_{\gamma\delta} \lambda_{\alpha\gamma}^*(x_1) \lambda_{\delta\beta}(x_2). \qquad \underbrace{\frac{\ell,k}{2} \sum_{2\frac{\lambda_{\alpha\gamma}^*(x_1)}{\Lambda}}}_{2\frac{\lambda_{\alpha\gamma}^*(x_1)}{\Lambda}} \lambda_{\delta\beta}(x_2).$$

$$\times \Delta^{>,<}(x_2,x_1)\Delta^{>,<}(x_2,x_1)S^{>,<}_{\gamma\delta}(x_2,x_1)$$
,

$$\Delta N_\ell = -rac{12}{\Lambda^2}\int \underline{d^4x d^4r \left(-i
ight) {
m tr}[\lambda^*(x_1)\lambda(x_2)]} {\cal M} \, .$$

$$\mathcal{M} = i \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} e^{iK \cdot (-r)} \left\{ \Delta_q^<(x) \Delta_{q'}^<(x) \mathrm{tr}[S_k^<(x) S_{k'}^<(x)] - \Delta_q^>(x) \Delta_{q'}^>(x) \mathrm{tr}[S_k^>(x) S_{k'}^>(x)] \right\}$$

The final lepton asymmetry is determined by the behaviour of Weinberg operator during the phase transition and thermal properties of leptons and the Higgs.

Leptogenesis via Weinberg operator (in CTP approach)

$$\Delta f_{\ell} = \frac{3 \operatorname{Im} \{ \operatorname{tr}[m_{\nu}^{0} m_{\nu}^{*}] \} T^{2}}{(2\pi)^{4} v_{H}^{4}} F(x_{1}, x_{\gamma})$$

$$\Delta n_{\ell} = \int rac{d^3 \mathbf{k}}{(2\pi)^3} \Delta f_{\ell}$$

$$\begin{split} F(x_1,x_\gamma) &= \frac{1}{x_1} \int_0^{+\infty} dx \int_0^{+\infty} x_2 dx_2 \int_{|x_1-x|}^{x_1+x} dx_3 \int_{|x_2-x|}^{x_2+x} dx_4 \sum_{\eta_2,\eta_3,\eta_4=\pm 1} \\ &\times \left[1 - \frac{(x_1^2 + x^2 - x_3^2)(x_2^2 + x^2 - x_4^2)}{4\eta_2 x_1 x_2 x^2}\right] \frac{X_{\eta_2 \eta_3 \eta_4} x_\gamma \sinh X_{\eta_2 \eta_3 \eta_4}}{(X_{\eta_2 \eta_3 \eta_4}^2 + x_\gamma^2)^2 \cosh x_1 \cosh x_2 \sinh x_3 \sinh x_4} \end{split}$$

$$m_{\nu}^{0} = \lambda^{0} \frac{v_{H}^{2}}{\Lambda}$$
$$m_{\nu} = \lambda \frac{v_{H}^{2}}{\Lambda}$$

$$x_1 = |\mathbf{k}|\beta/2,$$
 $x_2 = |\mathbf{k}'|\beta/2,$
 $x_3 = |\mathbf{q}|\beta/2,$
 $x_4 = |\mathbf{q}'|\beta/2,$
 $x_{\gamma} = \Gamma\beta/2,$
 $\Gamma = 2(\gamma_H + \gamma_\ell)$
 $\beta \equiv 1/T$

Leptogenesis via RH neutrino decays

Leptogenesis via ...

RH neutrino decay in the framework of flavour effect seesaw resonant decay RH neutrino oscillation

Weinberg operator

Thank you very much!

Backup

CTP approach

Propagators

Feynman
$$S_{\alpha\beta}^T(x_1,x_2) = \langle T[\ell_{\alpha}(x_1)\overline{\ell}_{\beta}(x_2)] \rangle$$

Dyson
$$S_{\alpha\beta}^{\overline{T}}(x_1,x_2) = \langle \overline{T}[\ell_{\alpha}(x_1)\overline{\ell}_{\beta}(x_2)] \rangle$$

Wightman

$$S_{\alpha\beta}^{<}(x_1, x_2) = -\langle \overline{\ell}_{\beta}(x_2)\ell_{\alpha}(x_1)\rangle$$

$$S^{>}_{\alpha\beta}(x_1, x_2) = \langle \ell_{\alpha}(x_1) \overline{\ell}_{\beta}(x_2) \rangle$$

Kadanoff-Baym equation

$$i\partial S^{<,>} - \Sigma^H \odot S^{<,>} - \Sigma^{<,>} \odot S^H = \frac{1}{2} [\Sigma^> \odot S^< - \Sigma^< \odot S^>]$$

Lepton asymmetry

Self energy correction

Dispersion relations

Collision term

$$\Delta n_{\ell\alpha}(x) = -\frac{1}{2} \operatorname{tr} \left\{ \gamma^0 \left[S_{\alpha\alpha}^{<}(x, x) + S_{\alpha\alpha}^{>}(x, x) \right] \right\}$$

$$\Delta f_{\ell\alpha}(k) = -\int_{t_i}^{t_f} dt_1 \partial_{t_1} \operatorname{tr} \left[\gamma_0 S_{\vec{k}}^{<}(t_1, t_1) + \gamma_0 S_{\vec{k}}^{>}(t_1, t_1) \right]$$

$$S^H = S^T - \frac{1}{2}(S^> + S^<)$$
 $\Sigma^H = \Sigma^T - \frac{1}{2}(\Sigma^> + \Sigma^<)$
CPV source

Influence of phase transition

Single-scalar phase transition

$$\lambda(x) = \lambda^0 + \lambda^1 f(x)$$
 $f(x) \equiv \frac{\langle \phi(x) \rangle}{v_\phi}$

$$m_{\nu}^{0} = \lambda^{0} \frac{v_{H}^{2}}{\Lambda}$$

$$m_{\nu} = \lambda \frac{v_{H}^{2}}{\Lambda}$$

$$\int d^4x \operatorname{Im}\{\operatorname{tr}[\lambda^*(x_1)\lambda(x_2)]\} = \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^*]\}\left(r^0 - \frac{r^3}{v_w}\right)V$$

$$\Delta n_\ell^{\rm I} = -\frac{12}{\Lambda^2} {\rm Im}\{{\rm tr}[\lambda^0\lambda^*]\} \int d^4r \, r^0 \, {\cal M} \qquad {\rm time-dependent\ integration}$$

$$\Delta n_\ell^{\rm II} = \frac{12}{v_w\Lambda^2} {\rm Im}\{{\rm tr}[\lambda^0\lambda^*]\} \int d^4r \, r^3 \, {\cal M} \qquad {\rm space-dependent\ integration}$$

 $\Delta n_{\ell} = \Delta n_{\ell}^{\mathrm{I}} + \Delta n_{\ell}^{\mathrm{II}}$

Influence of phase transition

Multi-scalar phase transition (in the thick-wall limit)

$$\begin{aligned} \text{\Theta.g.,} \qquad \lambda(x) &= \lambda^0 + \lambda^1 f_1(x) + \lambda^2 f_2(x) \\ \operatorname{Im}\{\operatorname{tr}[\lambda^*(x_1)\lambda(x_2)]\} &= \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^{1*}]\}[f_1(x_1) - f_1(x_2)] + \operatorname{Im}\{\operatorname{tr}[\lambda^0\lambda^{2*}]\}[f_2(x_1) - f_2(x_2)] \\ &+ \operatorname{Im}\{\operatorname{tr}[\lambda^{1*}\lambda^2]\}[f_1(x_1)f_2(x_2) - f_1(x_2)f_2(x_1)] \end{aligned}$$

Interferences of different scalar VEVs cannot be neglected.

$$\int d^4r \mathrm{Im}\{\mathrm{tr}[\lambda^*(x_1)\lambda(x_2)]\} \mathcal{M} = \int d^4r \mathrm{Im}\{\mathrm{tr}[\lambda^*(x+r/2)\lambda(x-r/2)]\} \mathcal{M} \\ \approx \mathrm{Im}\{\mathrm{tr}[\lambda^*(x)\partial_\mu\lambda(x)]\} \int d^4r r^\mu \mathcal{M} \,. \\ \Delta n_\ell^\mathrm{I} \propto \boxed{\mathrm{Im}\{\mathrm{tr}[\lambda^*(x)\partial_t\lambda(x)]\}} \int d^4r \, r^0 \, \mathcal{M} \quad \text{time-dependent integration} \\ \Delta n_\ell^\mathrm{II} \propto \boxed{\mathrm{Im}\{\mathrm{tr}[\lambda^*(x)\partial_z\lambda(x)]\}} \int d^4r \, r^3 \, \mathcal{M} \quad \text{space-dependent integration}$$

Time derivative/spatial gradient

Silvia Pascoli, Jessica Turner, YLZ, in progress

Influence of thermal effects

Thermal effects influence the timeand space-dependent integration.

$$\int d^4 r \, r^0 \, {\cal M}$$

$$\int d^4 r \, r^3 \, {\cal M}$$

$$\mathcal{M} = i \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} \frac{d^4q'}{(2\pi)^4} e^{iK \cdot (-r)} \left\{ \Delta_q^<(x) \Delta_{q'}^<(x) \mathrm{tr}[S_k^<(x) S_{k'}^<(x)] - \Delta_q^>(x) \Delta_{q'}^>(x) \mathrm{tr}[S_k^>(x) S_{k'}^>(x)] \right\}$$

Resummed propagators of the Higgs and leptons

$$\begin{split} &\Delta_{q}^{<,>} = \frac{-2\varepsilon(q^{0})\mathrm{Im}\Pi_{q}^{R}}{[q^{2} + \mathrm{Re}\Pi_{q}^{R}]^{2} + [\mathrm{Im}\Pi_{q}^{R}]^{2}} \Big\{ \vartheta(\mp q^{0}) + f_{B,|q^{0}|}(x) \Big\} \,, \\ &S_{k}^{<,>} = \frac{-2\varepsilon(k^{0})\mathrm{Im}\Sigma_{k}^{R2}}{[k^{2} + \mathrm{Re}\Sigma_{q}^{R2}]^{2} + [\mathrm{Im}\Sigma_{q}^{R2}]^{2}} \Big\{ \vartheta(\mp k^{0}) - f_{F,|q^{0}|}(x) \Big\} P_{L} \not k P_{R} \,, \end{split}$$

thermal equilibrium

$$f_{B,|m{q}^0|} \equiv rac{1}{e^{eta|m{q}^0|}-1}\,, \qquad f_{F,|m{k}^0|} \equiv rac{1}{e^{eta|m{k}^0|}+1}\,,$$

thermal mass

$$m_{\mathrm{th},H}^2 = \mathrm{Re}\Pi$$
 $m_{\mathrm{th},\ell} = \mathrm{Re}\Sigma$ $\gamma_H = \frac{\mathrm{Im}\Pi}{2m_{\mathrm{th},\ell}}$ $\gamma_\ell = \frac{\mathrm{Im}\Sigma^2}{2m_{\mathrm{th},\ell}}$

thermal width

By assuming thermal equilibrium in the rest frame of plasma, the space-dependent integration is zero.

$$\mathcal{M} \frac{\text{is invariant under parity transformation}}{r \to r^P = (r^0, -\mathbf{r}), \quad k_n \to k_n^P = (k_n^0, -\mathbf{k}_n)} \Longrightarrow \int d^4r \, r^3 \, \mathcal{M} = 0$$

Influence of thermal effects

Performing the time-dependent integration

From 4D momentum space to 3D momentum space + 1D time

$$\Delta_{\mathbf{q}}^{<,>}(t_{1},t_{2}) = \int \frac{dq^{0}}{2\pi} e^{-iq^{0}y} \Delta_{\mathbf{q}}^{<,>} = \frac{\cos(\omega_{\mathbf{q}}y^{\mp})}{2\omega_{\mathbf{q}}\sinh(\omega_{\mathbf{q}}\beta/2)} e^{-\gamma_{H,\mathbf{q}}|y|}, \qquad y = r^{0}$$

$$S_{\mathbf{k}}^{<,>}(t_{1},t_{2}) = \int \frac{dk^{0}}{2\pi} e^{-ik^{0}y} S_{k}^{<,>} = -P_{L} \frac{\gamma^{0}\cos(\omega_{\mathbf{k}}y^{\mp}) + i\vec{\gamma} \cdot \hat{\mathbf{k}}\sin(\omega_{\mathbf{k}}y^{\mp})}{2\cosh(\omega_{\mathbf{k}}\beta/2)} e^{-\gamma_{\ell,\mathbf{k}}|y|}, \qquad y^{-} = y - i\beta/2$$

Integrating out the time

$$\omega_{\mathbf{q}} = \sqrt{m_{H,\mathrm{th}}^2 + \mathbf{q}^2}, \; \omega_{\mathbf{k}} = \sqrt{m_{\ell,\mathrm{th}}^2 + \mathbf{k}^2} \; \mathrm{and} \; \hat{\mathbf{k}} \equiv \mathbf{k}/\omega_{\mathbf{k}}$$

$$\int d^4r \, y \mathcal{M} = 2 \int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{d^3\mathbf{q}}{(2\pi)^3} \int dy \, y \mathcal{M}$$

$$\int_{-\infty}^{+\infty} dy y \mathcal{M} = 2 \int_{0}^{+\infty} dy y \mathcal{M}$$

$$\Gamma = 2(\gamma_H + \gamma_\ell)$$

$$= 2 \int_{0}^{+\infty} dy y \frac{\operatorname{Im}\{\cos(\omega_{\mathbf{q}}y^-)\cos(\omega_{\mathbf{q}'}y^-)[\cos(\omega_{\mathbf{k}}y^-)\cos(\omega_{\mathbf{k}'}y^-) + \hat{\mathbf{k}} \cdot \hat{\mathbf{k}}'\sin(\omega_{\mathbf{k}}y^-)\sin(\omega_{\mathbf{k}'}y^-)]\}}{8\omega_{\mathbf{q}}\omega_{\mathbf{q}'}\sinh(\omega_{\mathbf{q}}\beta/2)\sinh(\omega_{\mathbf{q}'}\beta/2)\cosh(\omega_{\mathbf{k}}\beta/2)\cosh(\omega_{\mathbf{k}'}\beta/2)}$$

$$= -\sum_{\eta_2,\eta_3,\eta_4=\pm 1} \frac{\Omega_{\eta_2\eta_3\eta_4}\Gamma\sinh(\beta\Omega_{\eta_2\eta_3\eta_4}/2)[1 - \eta_2\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}']}{32\omega_{\mathbf{q}}\omega_{\mathbf{q}'}(\Omega_{\eta_2\eta_3\eta_4}^2 + \Gamma^2)^2\sinh(\omega_{\mathbf{q}}\beta/2)\sinh(\omega_{\mathbf{q}'}\beta/2)\cosh(\omega_{\mathbf{k}}\beta/2)\cosh(\omega_{\mathbf{k}'}\beta/2)}$$